Задачи на проценты, сплавы и смеси
1. В сосуд, содержащий 10 литров 14-процентного водного раствора некоторого вещества, добавили 4 литра воды. Сколько процентов составит концентрация получившегося раствора?
2. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составит концентрация получившегося раствора?
3. В сосуд, содержащий 7 литров 15-процентного водного раствора некоторого вещества, добавили 8 литров воды. Сколько процентов составит концентрация получившегося раствора?
4. В сосуд, содержащий 8 литров 20-процентного водного раствора некоторого вещества, добавили 8 литров воды. Сколько процентов составляет концентрация получившегося раствора?
5. Смешали некоторое количество 19-процентного раствора некоторого вещества с таким же количеством 17-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
6. Смешали некоторое количество 12-процентного раствора некоторого вещества с таким же количеством 14-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
7. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
8. Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
9. Первый сплав содержит 5% меди, второй — 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
10. Первый сплав содержит 5% меди, второй — 11% меди. Масса второго сплава больше массы первого на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
11. Имеется два сплава. Первый сплав содержит 5% меди, второй — 14% меди. Масса второго сплава больше массы первого на 10 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
12. Имеется два сосуда. Первый содержит 60 кг, а второй — 20 кг растворов кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 30% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 45% кислоты. Сколько процентов кислоты содержится в первом сосуде?
13. Имеется два сосуда. Первый содержит 30 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
14. Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
15. Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
16. Смешав 24-процентный и 67-процентный растворы кислоты и добавив 10 кг чистой воды, получили 41-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 45-процентный раствор кислоты. Сколько килограммов 24-процентного раствора использовали для получения смеси?
17. Смешав 43-процентный и 89-процентный растворы кислоты и добавив 10 кг чистой воды, получили 69-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 73-процентный раствор кислоты. Сколько килограммов 43-процентного раствора использовали для получения смеси?
18. Смешав 38-процентный и 52-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 46-процентный раствор кислоты. Сколько килограммов 38-процентного раствора использовали для получения смеси?
19. Смешав 45-процентный и 97-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 45-процентного раствора использовали для получения смеси?
20. Восемь одинаковых рубашек дешевле куртки на 4%. На сколько процентов одиннадцать таких же рубашек дороже куртки?
21. Десять одинаковых рубашек дешевле куртки на 6%. На сколько процентов пятнадцать таких же рубашек дороже куртки?
22. Десять одинаковых рубашек дешевле куртки на 8%. На сколько процентов пятнадцать таких же рубашек дороже куртки?
23. Одиннадцать одинаковых рубашек дешевле куртки на 1%. На сколько процентов пятнадцать таких же рубашек дороже куртки?
24. Семь одинаковых рубашек дешевле куртки на 9%. На сколько процентов девять таких же рубашек дороже куртки?
25. Шесть одинаковых рубашек дешевле куртки на 10%. На сколько процентов семь таких же рубашек дороже куртки?
26. Семья состоит из мужа, жены и их дочери-студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 51%. Если бы стипендия дочери уменьшилась вдвое, общий доход семьи сократился бы на 3%. Сколько процентов от общего дохода семьи составляет зарплата жены?
27. Семья состоит из мужа, жены и их дочери-студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 66%. Если бы стипендия дочери уменьшилась вчетверо, общий доход семьи сократился бы на 6%. Сколько процентов от общего дохода семьи составляет зарплата жены?
28. Семья состоит из мужа, жены и их дочери-студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 57%. Если бы стипендия дочери уменьшилась вдвое, общий доход семьи сократился бы на 1%. Сколько процентов от общего дохода семьи составляет зарплата жены?
29. Семья состоит из мужа, жены и их дочери-студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?
30. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 42 килограммов изюма, если виноград содержит 82% воды, а изюм содержит 19% воды?
31. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 38 килограммов изюма, если виноград содержит 82% воды, а изюм содержит 19% воды?
32. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 20 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?
33. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 54 килограмма изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?
Задачи на движение по прямой
1. Расстояние между городами A и B равно 630 км. Из города A в город B выехал первый автомобиль, а через три часа после этого навстречу ему из города B выехал со скоростью 70 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 350 км от города A. Ответ дайте в км/ч.
2. Расстояние между городами A и B равно 390 км. Из города A в город B выехал первый автомобиль, а через два часа после этого навстречу ему из города B выехал со скоростью 75 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 240 км от города A. Ответ дайте в км/ч.
3. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 117 км. На следующий день он отправился обратно в А со скоростью на 4 км/ч больше прежней. По дороге он сделал остановку на 4 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч.
4. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 143 км. На следующий день он отправился обратно в А со скоростью на 2 км/ч больше прежней. По дороге он сделал остановку на 2 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. Ответ дайте в км/ч.
5. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 135 км. На следующий день он отправился обратно со скоростью на 6 км/ч больше прежней. По дороге он сделал остановку на 6 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.
6. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 126 км. На следующий день он отправился обратно со скоростью на 5 км/ч больше прежней. По дороге он сделал остановку на 5 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.
7. Из пункта А в пункт В, расстояние между которыми 50 км, одновременно выехали автомобилист и велосипедист. За час автомобилист проезжает на 30 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 1 час 30 минут позже автомобилиста. Ответ дайте в км/ч.
8. Из пункта А в пункт В, расстояние между которыми 30 км, одновременно выехали автомобилист и велосипедист. За час автомобилист проезжает на 25 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 50 минут позже автомобилиста. Ответ дайте в км/ч.
9. Из пункта А в пункт В, расстояние между которыми 40 км, одновременно выехали автомобилист и велосипедист. За час автомобилист проезжает на 65 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл пункт В на 2 часа 10 минут позже автомобилиста. Ответ дайте в км/ч.
10. Из пункта А в пункт В, расстояние между которыми 100 км, одновременно выехали мотоциклист и велосипедист. Известно, что за час мотоциклист проезжает на 30 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 3 часа позже мотоциклиста. Ответ дайте в км/ч.
11. Из пункта А в пункт В, расстояние между которыми 60 км, одновременно выехали мотоциклист и велосипедист. Известно, что за час мотоциклист проезжает на 50 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 5 часов позже мотоциклиста. Ответ дайте в км/ч.
12. Из городов А и В навстречу друг другу одновременно выехали мотоциклист велосипедист. Мотоциклист приехал в город В на 10 часов раньше, чем велосипедист приехал в город А, а встретились они через 3 часа 45 минут после выезда. Сколько часов затратил на путь из города В в город А велосипедист?
13. Из городов А и В навстречу друг другу одновременно выехали мотоциклист велосипедист. Мотоциклист приехал в город В на 2 часа раньше, чем велосипедист приехал в город А, а встретились они через 1 час 20 минут после выезда. Сколько часов затратил на путь из города В в город А велосипедист?
14. Из городов А и В навстречу друг другу одновременно выехали мотоциклист велосипедист. Мотоциклист приехал в город В на 7 часов раньше, чем велосипедист приехал в город А, а встретились они через 4 часа 40 минут после выезда. Сколько часов затратил на путь из города В в город А велосипедист?
15. Из городов А и В навстречу друг другу одновременно выехали мотоциклист велосипедист. Мотоциклист приехал в город В на 6 часов раньше, чем велосипедист приехал в город А, а встретились они через 1 час 36 минут после выезда. Сколько часов затратил на путь из города В в город А велосипедист?
16. Расстояние между городами A и B равно 420 км. Из города A в город B выехал автомобиль, а через 1 час следом за ним со скоростью 80 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.
17. Расстояние между городами A и B равно 360 км. Из города A в город B выехал автомобиль, а через 1 час следом за ним со скоростью 50 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.
Задачи на движение по воде
1. Моторная лодка прошла против течения реки 135 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 12 км/ч. Ответ дайте в км/ч.
2. Моторная лодка прошла против течения реки 252 км и вернулась в пункт отправления, затратив на обратный путь на 4 часа меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 16 км/ч. Ответ дайте в км/ч.
3. Моторная лодка прошла против течения реки 168 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 13 км/ч. Ответ дайте в км/ч.
4. Моторная лодка прошла против течения реки 165 км и вернулась в пункт отправления, затратив на обратный путь на 4 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 2 км/ч. Ответ дайте в км/ч.
5. Моторная лодка прошла против течения реки 247 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 3 км/ч. Ответ дайте в км/ч.
6. Теплоход проходит по течению реки до пункта назначения 384 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 8 часов, а в пункт отправления теплоход возвращается через 48 часов. Ответ дайте в км/ч.
7. Теплоход проходит по течению реки до пункта назначения 48 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 10 часов. Ответ дайте в км/ч.
8. От пристани A к пристани B, расстояние между которыми равно 240 км, отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним, со скоростью на 1 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт B оба теплохода прибыли одновременно. Ответ дайте в км/ч.
9. От пристани A к пристани B, расстояние между которыми равно 153 км, отправился с постоянной скоростью первый теплоход, а через 8 часов после этого следом за ним со скоростью на 8 км/ч большей отправился второй. Найдите скорость первого теплохода, если в пункт B оба теплохода прибыли одновременно. Ответ дайте в км/ч.
10. От пристани A к пристани B, расстояние между которыми равно 165 км, отправился с постоянной скоростью первый теплоход, а через 4 часа после этого следом за ним, со скоростью на 4 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт B оба теплохода прибыли одновременно. Ответ дайте в км/ч.
11. От пристани A к пристани B, расстояние между которыми равно 144 км, отправился с постоянной скоростью первый теплоход, а через 7 часов после этого следом за ним, со скоростью на 7 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт B оба теплохода прибыли одновременно. Ответ дайте в км/ч.
12. Катер в 10:00 вышел по течению реки из пункта А в пункт В, расположенный в 35 км от А. Пробыв в пункте В 4 часа, катер отправился назад и вернулся в пункт А в 18:00 того же дня. Определите собственную скорость катера (в км/ч), если известно, что скорость течения реки 3 км/ч.
13. Катер в 07:00 вышел по течению реки из пункта А в пункт В, расположенный в 63 км от А. Пробыв в пункте В 3 часа, катер отправился назад и вернулся в пункт А в 14:00 того же дня. Определите собственную скорость катера (в км/ч), если известно, что скорость течения реки 4 км/ч.
14. Баржа в 06:00 вышла из пункта А в пункт В, расположенный в 45 км от А. Пробыв в пункте В 4 часа, баржа отправилась назад и вернулась в пункт А в 22:00 того же дня. Определите (в км/ч) скорость течения реки, если известно, что собственная скорость баржи равна 8 км/ч.
15. Баржа в 06:00 вышла из пункта А в пункт В, расположенный в 56 км от А. Пробыв в пункте В 3 часа, баржа отправилась назад и вернулась в пункт А в 20:00 того же дня. Определите (в км/ч) скорость течения реки, если известно, что собственная скорость баржи равна 11 км/ч.
16. Теплоход, скорость которого в неподвижной воде равна 27 км/ч, проходит некоторое расстояние по реке и после стоянки возвращается в исходный пункт. Скорость течения равна 1 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 32 часа после отправления из него. Сколько километров проходит теплоход за весь рейс?
17. Теплоход, скорость которого в неподвижной воде равна 17 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 2 км/ч, стоянка длится 6 часов, а в исходный пункт теплоход возвращается через 40 часов после отправления из него. Сколько километров прошёл теплоход за весь рейс?
18. Теплоход, скорость которого в неподвижной воде равна 18 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 3 часа, а в исходный пункт теплоход возвращается через 39 часов после отправления из него. Сколько километров прошёл теплоход за весь рейс?
19. Теплоход, скорость которого в неподвижной воде равна 24 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 2 часа, а в исходный пункт теплоход возвращается через 34 часа после отправления из него. Сколько километров прошёл теплоход за весь рейс?
20. Моторная лодка в 08:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 1 час 30 минут, лодка отправилась назад и вернулась в пункт А в 22:00 того же дня. Определите (в км/ч) скорость течения реки, если известно, что собственная скорость лодки равна 5 км/ч.
21. Моторная лодка в 11:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 2 часа 30 минут, лодка отправилась назад и вернулась в пункт А в 21:00 того же дня. Определите (в км/ч) скорость течения реки, если известно, что собственная скорость лодки равна 9 км/ч.
22. Байдарка в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20 минут, байдарка отправилась назад и вернулась в пункт А в 16:00 того же дня. Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки равна 2 км/ч.
23. Байдарка в 07:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 2 часа 40 минут, байдарка отправилась назад и вернулась в пункт А в 23:00 того же дня. Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки равна 3 км/ч.
Задачи на работу
1. Заказ на 380 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?
2. Заказ на 247 деталей первый рабочий выполняет на 6 часов быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 6 деталей больше?
3. Заказ на 260 деталей первый рабочий выполняет на 7 часов быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 7 деталей больше?
4. Заказ на 88 деталей первый рабочий выполняет на 3 часа быстрее, чем второй. Сколько деталей в час делает первый рабочий, если известно, что он за час делает на 3 детали больше, чем второй?
5. Заказ на 152 детали первый рабочий выполняет на 11 часов быстрее, чем второй. Сколько деталей в час делает первый рабочий, если известно, что он за час делает на 11 деталей больше, чем второй?
6. Заказ на 209 деталей первый рабочий выполняет на 8 часов быстрее, чем второй. Сколько деталей в час делает первый рабочий, если известно, что он за час делает на 8 деталей больше, чем второй?
7. На изготовление 77 деталей первый рабочий тратит на 4 часа меньше, чем второй рабочий на изготовление 99 таких же деталей. Известно, что первый рабочий за час делает на 2 детали больше, чем второй. Сколько деталей за час делает второй рабочий?
8. На изготовление 60 деталей первый рабочий тратит на 4 часа меньше, чем второй рабочий на изготовление 80 таких же деталей. Известно, что первый рабочий за час делает на 2 детали больше, чем второй. Сколько деталей за час делает второй рабочий?
9. На изготовление 660 деталей первый рабочий затрачивает на 8 часов меньше, чем второй рабочий на изготовление 780 деталей. Известно, что первый рабочий за час делает на 4 детали больше, чем второй. Сколько деталей за час делает первый рабочий?
10. На изготовление 832 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 928 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей за час делает первый рабочий?
11. На изготовление 540 деталей первый рабочий затрачивает на 12 часов меньше, чем второй рабочий на изготовление 600 деталей. Известно, что первый рабочий за час делает на 10 деталей больше, чем второй. Сколько деталей в час делает первый рабочий?
12. Первая труба пропускает на 8 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 180 литров она заполняет на 8 минут дольше, чем вторая труба?
13. Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 204 литра она заполняет на 5 минут дольше, чем вторая труба?
14. Первая труба наполняет резервуар на 13 минут дольше, чем вторая. Обе трубы, работая одновременно, наполняют этот же резервуар за 42 минуты. За сколько минут наполняет этот резервуар одна вторая труба?
15. Первая труба наполняет резервуар на 48 минут дольше, чем вторая. Обе трубы, работая одновременно, наполняют этот же резервуар за 45 минут. За сколько минут наполняет этот резервуар одна вторая труба?
16. Один мастер может выполнить заказ за 30 часов, а другой — за 15 часов. За сколько часов выполнят заказ оба мастера, работая вместе?
17. Один мастер может выполнить заказ за 24 часа, а другой — за 12 часов. За сколько часов выполнят заказ оба мастера, работая вместе?